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Abstract

A comparison is made between the perturbation theories of Hori and

Deprit which are based on the use of Poisson brackets. Explicit relations

between the determining functions for the two theories are indicated

through the sixth order, these results having been obtained by a novel

computer program. A general argument for the equivalence of the theories

to all orders is given.



ERRATA

Equivalence of the Perturbation Theories of Hori and Deprit

by	 J. A. Campbell and William H. Jefferys

TR 1011	 January, 197C

page 8	 Equation (20)

Reads:[LW  	 LW] ]	 -L 
W1 

W]
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1.	 INTRODUCTION

P; , rturbation theories based can the use of Poisson brackets have several

advantages over the usual von Zeipel's method (Hori 1966; Deprit 1969).

The determining function is not a mixed function of old and new coordinates;

the theory is canonically invariant (because this is true of the Poisson

brackets), and it is possible to give a direct expression of any function

of old variables in terms of the new variables.

Both Hori and Deprit have proposed formulations of such a perturbs-

tion theory, which are not obviously equivalent. Deprit's equations,in

particular, involve extra terms containing partial derivatives with respect

to the small parameter e , and thus have greater complexity. On the other

hand, Deprit (1969) has expressed reservations about the correctness of

Hori's formulation, while remarking that a comparative study of the two

methods may be informative.

In this paper we present just such a comparative study. We show by

explicit calculation that the two theories are equivalent through the sixth

order in e (the fifth-order and sixth-order calculations having been

carrieo out by a computer program), and point out why they should be equiv-

alent to all orders. Through the sixth order we shall obtain for every

determining function W for Deprit's theory, a corresponding function S for
r

Hori's theory which produces the identical canonical transformation.

Since Deprit's reservations rest on whether or not Hori's transformation

is actually canonical, this resolves the dilemma associated with apparent

differences between the two methods.

6
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1 .	 13RII;F DESCRIPT.TON OF DFPRIT' S THEORY

With minor modifications we use the notation of the paper by Deprit

(1969). Since his treatment is extensive, we shall give only the prin-

cipal equations. If W(y, Y, 6) is an arbitrary function of canonically

conjugate vector variables (y, Y), with e as a small parameter, Deprit

defines the operator LW on functions f by

of	 aW	 _	 )f	 aW
LWf =	 f, W =	

aye by 	 by  aye	 (1)

J

Introducing the operator AW by

	

OWf = LWf + ae
	 (2)

he shows that if we define the exponential mapping

n__	 e	 n
W	 n

	

t	 AW	 ,	 (3)
inp	 '	 e=0

where A, is the n'th iteration of	 , and (^ f) C=G is the result of

setting e = 0 in the expansion of AW f , then the formulae

Xi = Ewyi '
	

Xi	 EWYi	 (4)

define a canonical transformation (y, Y) —), 	 (x, X). If f is any function

of (y, Y), then its expression in the new coordinates is given by EWf.

Deprit then defines
en

WWWn+l (Y, Y)	 (5a)
n2 0
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Y

	

['	 ^n

f =	 L	 to (Y, Y )	 (Sb)
n20

	

Since the Poisson brackets 	 are bilinear, this leads to

vn

LW	
L

	

nip	
n :

	
-1+1
	 (6) , 

	where we have set Ln+l = LW 	With
n+1

k	 k̂	 en	 kf	 =	 f =	 n:	 fn 	 7)
nZp

Deprit shows that

n

k+l	 k	 +	 n	 kfn 	=	
11+1
	

m= p
 ( m) Lm+l fn-m ,	 (8)

which is his basic recursion relationship. With all the f n known, the

transformation is constructed through

nC
E  f =	 f n

	
(9)

n2!0p	
n:	 0	

9

By using the recursive formula (8) repeatedly and making substitutions into

(;), nne eventually arrives at the relationship between the quantities

f n and f n . Through the fourth order, these are:

	

f 0 = f 0	 (10a)
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f0 1 	LIf0 + f l ,	 (10b)

f a 2 = (L 1 2+L 2) f0 + 2L 1 f I + f 2 ,	 (10c)

f0 3 = 
(Li3 + 2L

IL 2 + L 
2 
L I + L 3 ) f0 + (3L 1 2 + 3L2)f I

 (10d)

+ 3L1f2 + f 3

f0 4 = (L1 4 + 3L1L 3 + 3L 2 2 + L 3L1 + 3L1 2L 2 + 2L1L2L1

-+ L 
2 
L 1 2 + L 4)f0 + (4L 1 3 + 8L

1L 2 + 4L 2L 1 + 
4L

3)f1 (10e)

+ (6L 1 2 + 6L 2) f2 + 4L1f3 + f4

Note that L 
i 
L j # L 

i 
L 
i 

in general, because we are working with noncommuting

operators. We have derived results for the next two orders by computer,

and we shall discuss these results in Section 5.

3.	 BRIEF DESCRIPTION OF HORI'S THEORY

The basic exponential map, corresponding to the determining function

S. is given by Equation (2) of Hori (1966), which we write as

nC	 nFS f =	 n; Dn f
n2!0

where D 
S f = f, S , and (11) is the equation that corresponds to (9)

above for Deprit's theory. In (11) there is no setting of e^0 in any

term, in contrast to what occurs in (3) above, which is a counterpart of

( 1)). Again we expand f and S in power series in E, this time with the choice

(11)
i
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S	 Sn	 (Y, Y )	 (12)
nZ0 (n+1) ;	 n+l

Equations (12) is not identical, in form to (5a) . The extra factor of

11(n+1) under the summation makes no change in the interpretation of the

method, but it allows an easier comparison between formulae without the

recurrence of su p erfluous fractional coefficients. The expansion for f

is unchanged. Then, corresponding to (6), we obtain

D = 
I	 en	 D

S	 1120	 (n+l) !	 n+1 ,	 (13)

where Dn+1 = DS When these definitions are put into (11), the right-
n+l

hand side expanded, and terms in each power of e collected, one arrives

at an equation for F S f in the form

n
FS

 
	 =	 e,	 fn	 (14)

nZ0

where, with different functions f n k from those in (7), we have

n

f
f
n =	 m	 ( is)

m-	 m	 n-m ' 

f
k+1 

=	 ( n 1 Dm+1 f 	 (16)
`-^ \ J	 ,n	 m_	 m	 m+1 n-m

n
and	 Dk f =	 L,	 e, fk	,	 (17)

S	 n2U	
n.	 n

analog+usly to Deprit's formulae in Section 2. To the fourth order, the

analogues of the equations (10) are

f0 = f0	(18a)

f
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f1 = D 
1 

f 0 + fl	,	 (18b)

f 2	 (D2 + D Z) f0 + 2D
1 f 1

+ f 2 ,	 (18c)

f 3 = (D3 + 2 D1 D 2 + z D2D1 + D 3) f0 + (3D2 + 3D2) fl

+ 3D1f2 + f 3	,	 (18d)

f4 = (D4 + 2D1 D3 + 3D2+ 	 2D 3 D1 + 2D2D 2+ 	 2D1D2D1

• 2DZD2 + D4)f0

• (4D 3 + 6D
1D 2 + 6D2D 1 + 4D3) fl

• (6D 2 + 6D
2
 )f

2
+ Q

1 f 3
+ f4	(18e)

Once again, we have produced the fifth-order and sixth-order terms w':h

a computer program.

4.	 COMPARISON OF THE TWO THEORIES

In order for the two methods to define identical canonical transfor-

mations, we must have EWf = F 
S 
f for every function f. This implies that

we must be able to select W and S such that, in equations (10) and (18),

we have f  = f  for every choice of f n . This will imply in turn a set of

relations between the operators Dm and Ln.

The zeroth order equations are automatically satisfied. The first

order requires D 1 anc? L 1 to be equal; equivalently, S 1 = W1 . The second-

order comparison requires that D 2 = L 2 , i.e., S 2 = W 2 . All of these results

-7-
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follow trivially from the observation that the coefficients of corresponding

terms are identical.

In the third order, it looks at first inspection as if the equations

are in conflict. However, if we define

D 3 = L 3 + Z [L l , L 2 ]	 , (19)

where [L 1 , L 2 ] = L 
1 
L 2 - L 2L l , then in view of the previous paragraph we

get o correspondence. Because of the Jacobi identity we have

[LW. ' L
W ] _ - L 

W P W	 ,	 (20)

which implies that

S 3
 = W3 - 2	 W1' W2	 (21)

Similarly, in the fourth order, the choice

D4 = L4 + [L 1 , L 3 ]	 (22)

leads to a correspondence, and from that result we deduce the relation

S 4 = W4 -	
W 1' W3 )

	

(23)

5.	 COMPARISON BY COMPUTER PROGRAM IN THE FIFTH AND SIXTH ORDERS

Beyond the fourth order the calculations become unwieldy (the number

of terms in the n'th order for each method is 2n), and automated calculation

-8-	 E



is highly desirable. Several symbolic programs exist already for the type

of formula manipulation which Leads to sets of equations like (10) or (18),

but in general these programs are not suitable for the final stage of

the present calculation, which requires the derivation of equations such

as (19) or (22). This is so because conventional symbolic programs usually

first expand expressions to be simplified, and then contract the result

in size simply by cancellation between terms. A more ingenious design is

needed if, for example, a program is intended to generate the result (22)

and not stop short at the form D 4 = L 4 + L 
I 
L 3 - L 3L 1 . One of us (J.A.C.)

is now developing a prograrr to deal with simplification of expressions

containing noncommuting quantities and to produce results in terms of

commutators or anti-commutators. Although the original test example for

the program was a problem in elementary-particle physics (cell-Mann, Horn

and Wey:,-rs 1968) quite different from the problem examined in this paper,

it required only eight days of not very concentrated effort to extend the

program to the point where it was also capable of turning out the relations

quoted in equations (19) , (22) , and (24) .

The program has been written in the versatile list-processing language

LISP 1.5 (McCarthy et a1. 1965). The complete calculation through sixth

order occupied 74.1 seconds of central-processor time on a Control Data

6600 Computer. It is a good working estimate that, if there exists a

general descriptive parameter N for a calculation (e.g., the order N in

p erturbation theory), then the time needed for a symbolic computation grows

at least as fast as an exponential in N. We have found the estimate to

be confirmed here, and conclude that a seventh-order calculation, if needed,

may take between F and 7 minutes of 6600 computing time. Almost certainly,

a nrogrsm written specifically to solve the problem under discussion in

A
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this paper will require less time for computation, but the present program

is intended to be as general as possible, and to function in several fields

other than celestial mechanics.

New test examples to make the program more efficient are still needed,

and we would be pleased to hear of suggestions of such examples.

It does not seem profitable to list all the details of the fifth-order

and sixth-orders expansions here, as these are best reproduced by use of

the recursive schemes described above, rather than by the use of (10) or

(18). However, we do give the central results, which are the relationships

between the D and L operators:

D 5 = T, 5 + 2 [L I , L 4 ] + [L 2, L 3 ] + 6 [L l , [L l , L3^

+ 2 [ [L I , L 2 ], L2]	 6	 [Ll, [L1., [L I , L 2 	,	 (24a)

D6 = L 6 + 2 [L1, L 5 I + z [L 2, L 4 I - z [L I , [L I , [LI , L3^

+ 2 [L I , [L 2 , L 3 ) + z [ [L l , L 3 ), L2)

+ [LI , [ [L l , L 2 ], 
L 2 ]	 + 2 [ L I , [L I , L, 4 ] )	 (24b)

These equations are now readily converted into the relations between the

quantities S
m 

and W 
n 
by the use of equation (20).

6.	 THE VALIDITY OF HOhl `S FUN-MULATION

At the beginning of Section 3 of his paper, De p rit makes some remarks

concerning the validity of the straightforward expansions in Lie series

when W depends on C.	 He is here referring to dFvelopments of functions

i
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f(y, Y) which are equivalent to those used by Hori. Superficially his

statement suggests that Hori's method is invalid, but on closer examination

of the statement and of Deprit's discussion, it appears that we are

actually led to the opposite conclusion.

Equations (1) through (17) of Deprit's paper show the validity of

the quoted developments for arbitrary functions which are independent of

e. Now consider a family of functions dependent on e. For a fixed but

arbitrary number e = e01 these become arbitrary functions independent of e.

Hence equations (1) through (17) of his paper assert the validity of the

developments for that fixed value of a 0 . (Here we are using e 0 merely as

a label to identify particular functions of the phase variables). But e0

is arbitrary, which shows that the expansions are valid for any e.

The crucial formula is Deprit's equation (3e), which states that

exp (eLW) 
^ f' 

g =	 exp (eL `V) f, exp (eLW) g 	 (25)

n
where	 exp (eL

W)	 n20	 n: LW	
(26)

Since the definition of LW, and hence of exp (eLW), does not involve the

possible dependence of td oil 	 (25) holds regardless of any such dependence.

Hence by defining
i

x = exp (eLW) y,	 X = exp (eLId Y ,	 (27)

we find with the use of (25) that the commutation relations for (x, X),

from the corresponding ones for (y, Y), are:

x	

r

	

x , .^ = rX i , X j	 = 0

i , Xj	 = 1 • b id	 ,	 (28)

-11-
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without regard to the dependence of W on e. This shows that (x, X) are

also canonical variables.

Because the part of the development summarized in equations (25)

through (28) is directly applicable to Hori t s theory, it follows that the

theory is,in fact,canonical. There is thus no further obstacle to the

calculation of relations between the determining functions for the theories

of Hori and Deprit in terms of Poisson brackets, as in equations (20) and

(23), to arbitrarily high orders.
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